Resistive Switching of Plasma–Treated Zinc Oxide Nanowires for Resistive Random Access Memory

نویسندگان

  • Yunfeng Lai
  • Wenbiao Qiu
  • Zecun Zeng
  • Shuying Cheng
  • Jinling Yu
  • Qiao Zheng
چکیده

ZnO nanowires (NWs) were grown on Si(100) substrates at 975 °C by a vapor-liquid-solid method with ~2 nm and ~4 nm gold thin films as catalysts, followed by an argon plasma treatment for the as-grown ZnO NWs. A single ZnO NW-based memory cell with a Ti/ZnO/Ti structure was then fabricated to investigate the effects of plasma treatment on the resistive switching. The plasma treatment improves the homogeneity and reproducibility of the resistive switching of the ZnO NWs, and it also reduces the switching (set and reset) voltages with less fluctuations, which would be associated with the increased density of oxygen vacancies to facilitate the resistive switching as well as to average out the stochastic movement of individual oxygen vacancies. Additionally, a single ZnO NW-based memory cell with self-rectification could also be obtained, if the inhomogeneous plasma treatment is applied to the two Ti/ZnO contacts. The plasma-induced oxygen vacancy disabling the rectification capability at one of the Ti/ZnO contacts is believed to be responsible for the self-rectification in the memory cell.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resistive switching in Ga- and Sb-doped ZnO single nanowire devices

Resistive random access memory (RRAM) is one of the most promising nonvolatile memory technologies because of its high potential to replace traditional charge-based memory, which is approaching its scaling limit. To fully realize the potential of the RRAM, it can be important to develop a unique device with current self-rectification, which provides a solution to suppress sneak current in cross...

متن کامل

Highly reliable switching via phase transition using hydrogen peroxide in homogeneous and multi-layered GaZnO(x)-based resistive random access memory devices.

Here, we propose an effective method for improving the resistive switching characteristics of solution-processed gallium-doped zinc oxide (GaZnO(x)) resistive random access memory (RRAM) devices using hydrogen peroxide. Our results imply that solution processed GaZnO(x) RRAM devices could be one of the candidates for the development of low cost RRAM.

متن کامل

Resistive switching in zinc–tin-oxide

Bipolar resistive switching is demonstrated in the amorphous oxide semiconductor zinc–tin-oxide (ZTO). A gradual forming process produces improved switching uniformity. Al/ZTO/Pt crossbar devices show switching ratios greater than 10, long retention times, and good endurance. The resistive switching in these devices is consistent with a combined filamentary/interfacial mechanism. Overall, ZTO s...

متن کامل

Individual Zn2SnO4-sheathed ZnO heterostructure nanowires for efficient resistive switching memory controlled by interface states

Resistive switching (RS) devices are widely believed as a promising candidate for next generation nonvolatile resistance random access memory. Here, Zn2SnO4-sheathed ZnO core/shell heterostructure nanowires were constructed through a polymeric sol-gel approach followed by post-annealing. The back-to-back bipolar RS properties were observed in the Ohmic contact two-terminal devices based on indi...

متن کامل

First-principles Modeling of Bipolar Resistive Switching in Metal-oxide Based Memory

A microscopic model of the resistive switching mechanism in bipolar metal-oxide based resistive random access memory (RRAM) is presented. The distribution of electron occupation probabilities obtained is in agreement with previous work. In particular, a low occupation region is formed near the cathode. A hysteresis cycle of RRAM switching simulated with the model including the ion dynamics is i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016